Format

Send to

Choose Destination
Neuron. 2014 Jan 22;81(2):402-15. doi: 10.1016/j.neuron.2013.11.010.

Oscillatory dynamics and place field maps reflect hippocampal ensemble processing of sequence and place memory under NMDA receptor control.

Author information

1
SILS - Center for Neuroscience, Universiteit van Amsterdam, 1090GE Amsterdam, the Netherlands; Cognitive Sciences Center Amsterdam, Research Priority Program "Brain and Cognition," 1018WS Amsterdam, the Netherlands; NERF, 3001 Leuven, Belgium; Donders Institute for Brain Cognition and Behavior, Radboud Universiteit Nijmegen, 6500GL Nijmegen, the Netherlands. Electronic address: cabralhenrique@gmail.com.
2
SILS - Center for Neuroscience, Universiteit van Amsterdam, 1090GE Amsterdam, the Netherlands; Cognitive Sciences Center Amsterdam, Research Priority Program "Brain and Cognition," 1018WS Amsterdam, the Netherlands.
3
Sorbonne Universit├ęs, UPMC Univ Paris 06, UMR-S 8246, Neuroscience Paris Seine, Navigation Memory and Aging Team, F-75005 Paris, France; INSERM, UMR-S 1130, Neuroscience Paris Seine, Navigation Memory and Aging Team, F-75005 Paris, France; CNRS, UMR 8246, Neuroscience Paris Seine, Navigation Memory and Aging Team, F-75005 Paris, France.
4
SILS - Center for Neuroscience, Universiteit van Amsterdam, 1090GE Amsterdam, the Netherlands; Cognitive Sciences Center Amsterdam, Research Priority Program "Brain and Cognition," 1018WS Amsterdam, the Netherlands; NERF, 3001 Leuven, Belgium; Donders Institute for Brain Cognition and Behavior, Radboud Universiteit Nijmegen, 6500GL Nijmegen, the Netherlands; VIB, 3000 Leuven, Belgium. Electronic address: f.battaglia@science.ru.nl.

Abstract

Place coding in the hippocampus requires flexible combination of sensory inputs (e.g., environmental and self-motion information) with memory of past events. We show that mouse CA1 hippocampal spatial representations may either be anchored to external landmarks (place memory) or reflect memorized sequences of cell assemblies depending on the behavioral strategy spontaneously selected. These computational modalities correspond to different CA1 dynamical states, as expressed by theta and low- and high-frequency gamma oscillations, when switching from place to sequence memory-based processing. These changes are consistent with a shift from entorhinal to CA3 input dominance on CA1. In mice with a deletion of forebrain NMDA receptors, the ability of place cells to maintain a map based on sequence memory is selectively impaired and oscillatory dynamics are correspondingly altered, suggesting that oscillations contribute to selecting behaviorally appropriate computations in the hippocampus and that NMDA receptors are crucial for this function.

PMID:
24462101
DOI:
10.1016/j.neuron.2013.11.010
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center