Format

Send to

Choose Destination
Proc Biol Sci. 2014 Jan 22;281(1778):20132881. doi: 10.1098/rspb.2013.2881. Print 2014 Mar 7.

A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification.

Author information

1
Institute of Biological and Environmental Sciences, University of Aberdeen, , Tillydrone Avenue, Aberdeen AB24 2TZ, UK, Scottish Oceans Institute, School of Biology, University of St Andrews, , St Andrews, Fife KY16 8LB, UK.

Abstract

Whole genome duplication (WGD) is often considered to be mechanistically associated with species diversification. Such ideas have been anecdotally attached to a WGD at the stem of the salmonid fish family, but remain untested. Here, we characterized an extensive set of gene paralogues retained from the salmonid WGD, in species covering the major lineages (subfamilies Salmoninae, Thymallinae and Coregoninae). By combining the data in calibrated relaxed molecular clock analyses, we provide the first well-constrained and direct estimate for the timing of the salmonid WGD. Our results suggest that the event occurred no later in time than 88 Ma and that 40-50 Myr passed subsequently until the subfamilies diverged. We also recovered a Thymallinae-Coregoninae sister relationship with maximal support. Comparative phylogenetic tests demonstrated that salmonid diversification patterns are closely allied in time with the continuous climatic cooling that followed the Eocene-Oligocene transition, with the highest diversification rates coinciding with recent ice ages. Further tests revealed considerably higher speciation rates in lineages that evolved anadromy--the physiological capacity to migrate between fresh and seawater--than in sister groups that retained the ancestral state of freshwater residency. Anadromy, which probably evolved in response to climatic cooling, is an established catalyst of genetic isolation, particularly during environmental perturbations (for example, glaciation cycles). We thus conclude that climate-linked ecophysiological factors, rather than WGD, were the primary drivers of salmonid diversification.

KEYWORDS:

anadromy; climate change; evolution; salmonid fish; species diversification; whole genome duplication

PMID:
24452024
PMCID:
PMC3906940
DOI:
10.1098/rspb.2013.2881
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Secondary source ID

Publication type

MeSH terms

Secondary source ID

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center