Format

Send to

Choose Destination
See comment in PubMed Commons below
Acad Med. 2014 Mar;89(3):387-92. doi: 10.1097/ACM.0000000000000130.

Reconsidering fidelity in simulation-based training.

Author information

1
Dr. Hamstra is professor, Departments of Medicine, Anesthesia and Surgery; research director, University of Ottawa Skills and Simulation Centre; and director, Academy for Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada. Dr. Brydges is assistant professor, Department of Medicine, University of Toronto, Toronto, Ontario, Canada. Dr. Hatala is associate professor, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada. Dr. Zendejas is resident, Department of Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota. Dr. Cook is professor of medicine and medical education, Department of Medicine, Mayo Clinic College of Medicine, and director, Office of Education Research, Mayo Medical School, Rochester, Minnesota.

Abstract

In simulation-based health professions education, the concept of simulator fidelity is usually understood as the degree to which a simulator looks, feels, and acts like a human patient. Although this can be a useful guide in designing simulators, this definition emphasizes technological advances and physical resemblance over principles of educational effectiveness. In fact, several empirical studies have shown that the degree of fidelity appears to be independent of educational effectiveness. The authors confronted these issues while conducting a recent systematic review of simulation-based health professions education, and in this Perspective they use their experience in conducting that review to examine key concepts and assumptions surrounding the topic of fidelity in simulation.Several concepts typically associated with fidelity are more useful in explaining educational effectiveness, such as transfer of learning, learner engagement, and suspension of disbelief. Given that these concepts more directly influence properties of the learning experience, the authors make the following recommendations: (1) abandon the term fidelity in simulation-based health professions education and replace it with terms reflecting the underlying primary concepts of physical resemblance and functional task alignment; (2) make a shift away from the current emphasis on physical resemblance to a focus on functional correspondence between the simulator and the applied context; and (3) focus on methods to enhance educational effectiveness using principles of transfer of learning, learner engagement, and suspension of disbelief. These recommendations clarify underlying concepts for researchers in simulation-based health professions education and will help advance this burgeoning field.

PMID:
24448038
DOI:
10.1097/ACM.0000000000000130
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Support Center