Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2014 Apr;42(6):4043-55. doi: 10.1093/nar/gkt1392. Epub 2014 Jan 20.

Scp160p is required for translational efficiency of codon-optimized mRNAs in yeast.

Author information

1
Interfaculty Institute for Biochemistry, Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany, Gene Center Munich and Department of Biochemistry, LMU München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany, Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland and Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.

Abstract

The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to >1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p's molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.

PMID:
24445806
PMCID:
PMC3973333
DOI:
10.1093/nar/gkt1392
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center