Baseline bone mineral density and boneturnover in pre-operative hip and knee arthroplasty patients

Bone Joint Res. 2014 Jan 17;3(1):14-9. doi: 10.1302/2046-3758.31.2000218. Print 2014.

Abstract

Aims: Osteoporosis and abnormal bone metabolism may prove to be significant factors influencing the outcome of arthroplasty surgery, predisposing to complications of aseptic loosening and peri-prosthetic fracture. We aimed to investigate baseline bone mineral density (BMD) and bone turnover in patients about to undergo arthroplasty of the hip and knee.

Methods: We prospectively measured bone mineral density of the hip and lumbar spine using dual-energy X-ray absorptiometry (DEXA) scans in a cohort of 194 patients awaiting hip or knee arthroplasty. We also assessed bone turnover using urinary deoxypyridinoline (DPD), a type I collagen crosslink, normalised to creatinine.

Results: The prevalence of DEXA proven hip osteoporosis (T-score ≤ -2.5) among hip and knee arthroplasty patients was found to be low at 2.8% (4 of 143). Spinal osteoporosis prevalence was higher at 6.9% (12 of 175). Sixty patients (42% (60 of 143)) had osteopenia or osteoporosis of either the hip or spine. The mean T-score for the hip was -0.34 (sd 1.23), which is within normal limits, and the mean hip Z-score was positive at 0.87 (sd 1.17), signifying higher-than-average BMD for age. The median urinary DPD/creatinine was raised in both female patients at 8.1 (interquartile range (IQR) 6.6 to 9.9) and male patients at 6.2 (IQR 4.8 to 7.5).

Conclusions: Our results indicate hip and knee arthroplasty patients have higher BMD of the hip and spine compared with an age-matched general population, and a lower prevalence of osteoporosis. However, untreated osteoporotic patients are undergoing arthroplasty, which may negatively impact their outcome. Raised DPD levels suggest abnormal bone turnover, requiring further investigation. Cite this article: Bone Joint Res 2014;3:14-19.

Keywords: Arthroplasty; BMD; Bone mineral density; Hip; Knee.

Grants and funding

This article presents independent research commissioned by the National Institute for Health Research (NIHR) under its Programme Grants for Applied Research funding scheme (RP-PG-0407-10064). The views expressed in this article are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Support was also received from the Oxford NIHR Musculoskeletal Biomedical Research Unit, Nuffield Orthopaedic Centre and University of Oxford.