Send to

Choose Destination
EMBO J. 2014 Feb 3;33(3):247-64. doi: 10.1002/embj.201387110. Epub 2014 Jan 17.

Developmental refinement of hair cell synapses tightens the coupling of Ca2+ influx to exocytosis.

Author information

InnerEarLab Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.


Cochlear inner hair cells (IHCs) develop from pre-sensory pacemaker to sound transducer. Here, we report that this involves changes in structure and function of the ribbon synapses between IHCs and spiral ganglion neurons (SGNs) around hearing onset in mice. As synapses matured they changed from holding several small presynaptic active zones (AZs) and apposed postsynaptic densities (PSDs) to one large AZ/PSD complex per SGN bouton. After the onset of hearing (i) IHCs had fewer and larger ribbons; (ii) CaV1.3 channels formed stripe-like clusters rather than the smaller and round clusters at immature AZs; (iii) extrasynaptic CaV1.3-channels were selectively reduced, (iv) the intrinsic Ca(2)(+) dependence of fast exocytosis probed by Ca(2)(+) uncaging remained unchanged but (v) the apparent Ca(2)(+) dependence of exocytosis linearized, when assessed by progressive dihydropyridine block of Ca(2)(+) influx. Biophysical modeling of exocytosis at mature and immature AZ topographies suggests that Ca(2)(+) influx through an individual channel dominates the [Ca(2)(+)] driving exocytosis at each mature release site. We conclude that IHC synapses undergo major developmental refinements, resulting in tighter spatial coupling between Ca(2)(+) influx and exocytosis.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center