Send to

Choose Destination
See comment in PubMed Commons below
Mol Plant. 2014 May;7(5):814-28. doi: 10.1093/mp/ssu004. Epub 2014 Jan 15.

MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana.

Author information

  • 1Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany.


The MYB34, MYB51, and MYB122 transcription factors are known to regulate indolic glucosinolate (IG) biosynthesis in Arabidopsis thaliana. To determine the distinct regulatory potential of MYB34, MYB51, and MYB122, the accumulation of IGs in different parts of plants and upon treatment with plant hormones were analyzed in A. thaliana seedlings. It was shown that MYB34, MYB51, and MYB122 act together to control the biosynthesis of I3M in shoots and roots, with MYB34 controlling biosynthesis of IGs mainly in the roots, MYB51 regulating biosynthesis in shoots, and MYB122 having an accessory role in the biosynthesis of IGs. Analysis of glucosinolate levels in seedlings of myb34, myb51, myb122, myb34 myb51 double, and myb34 myb51 myb122 triple knockout mutants grown in the presence of abscisic acid (ABA), salicylic acid (SA), jasmonate (JA), or ethylene (ET) revealed that: (1) MYB51 is the central regulator of IG synthesis upon SA and ET signaling, (2) MYB34 is the key regulator upon ABA and JA signaling, and (3) MYB122 plays only a minor role in JA/ET-induced glucosinolate biosynthesis. The myb34 myb51 myb122 triple mutant is devoid of IGs, indicating that these three MYB factors are indispensable for IG production under standard growth conditions.


R2R3 MYB; indolic glucosinolates; regulation; the triple myb34 myb51 myb122 mutant.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center