Format

Send to

Choose Destination
Sci Rep. 2014 Jan 13;4:3650. doi: 10.1038/srep03650.

Indigo carmine: an organic crystal as a positive-electrode material for rechargeable sodium batteries.

Author information

1
Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.

Abstract

Using sodium, instead of lithium, in rechargeable batteries is a way to circumvent the lithium's resource problem. The challenge is to find an electrode material that can reversibly undergo redox reactions in a sodium-electrolyte at the desired electrochemical potential. We proved that indigo carmine (IC, 5,5'-indigodisulfonic acid sodium salt) can work as a positive-electrode material in not only a lithium-, but also a sodium-electrolyte. The discharge capacity of the IC-electrode was ~100 mAh g(-1) with a good cycle stability in either the Na or Li electrolyte, in which the average voltage was 1.8 V vs. Na(+)/Na and 2.2 V vs. Li(+)/Li, respectively. Two Na ions per IC are stored in the electrode during the discharge, testifying to the two-electron redox reaction. An X-ray diffraction analysis revealed a layer structure for the IC powder and the DFT calculation suggested the formation of a band-like structure in the crystal.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center