Format

Send to

Choose Destination
See comment in PubMed Commons below
Toxicol In Vitro. 2014 Jun;28(4):492-501. doi: 10.1016/j.tiv.2014.01.001. Epub 2014 Jan 8.

Design and characterisation of a novel in vitro skin diffusion cell system for assessing mass casualty decontamination systems.

Author information

1
Research Centre for Transdermal Drug Delivery and Toxicology, Department of Pharmacy, University of Hertfordshire, Hatfield, United Kingdom.
2
Microbial Risk Assessment & Behavioural Science, Emergency Response Department, Public Health England, Porton Down, Salisbury, United Kingdom.
3
Research Centre for Transdermal Drug Delivery and Toxicology, Department of Pharmacy, University of Hertfordshire, Hatfield, United Kingdom. Electronic address: r.chilcott@herts.ac.uk.

Abstract

The efficient removal of contaminants from the outer surfaces of the body can provide an effective means of reducing adverse health effects associated with incidents involving the accidental or deliberate release of hazardous materials. Showering with water is frequently used by first responders as a rapid method of mass casualty decontamination (MCD). However, there is a paucity of data on the generic effectiveness and safety of aqueous decontamination systems. To address these issues, we have developed a new in vitro skin diffusion cell system to model the conditions of a common MCD procedure ("ladder pipe system"). The new diffusion cell design incorporates a showering nozzle, an air sampling port for measurement of vapour loss and/aerosolisation, adjustable (horizontal to vertical) skin orientation and a circulating manifold system (to maintain a specified flow rate, temperature and pressure of shower water). The dermal absorption characteristics of several simulants (Invisible Red S, curcumin and methyl salicylate) measured with the new in vitro model were in good agreement with previous in vitro and in vivo studies. Moreover, these initial studies have indicated that whilst flow rate and water temperature are important factors for MCD, the presence of clothing during showering may (under certain circumstances) cause transfer and spreading of contaminants to the skin surface.

KEYWORDS:

CW agent simulant; Decontamination; Diffusion cell; Ladder pipe system; Shower; Skin

PMID:
24412538
DOI:
10.1016/j.tiv.2014.01.001
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center