Format

Send to

Choose Destination
Plant Physiol. 2014 Mar;164(3):1415-29. doi: 10.1104/pp.113.229757. Epub 2014 Jan 9.

Distinct amino acids in the C-linker domain of the Arabidopsis K+ channel KAT2 determine its subcellular localization and activity at the plasma membrane.

Author information

1
Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, 34060 Montpellier cedex 2, France.

Abstract

Shaker K(+) channels form the major K(+) conductance of the plasma membrane in plants. They are composed of four subunits arranged around a central ion-conducting pore. The intracellular carboxy-terminal region of each subunit contains several regulatory elements, including a C-linker region and a cyclic nucleotide-binding domain (CNBD). The C-linker is the first domain present downstream of the sixth transmembrane segment and connects the CNBD to the transmembrane core. With the aim of identifying the role of the C-linker in the Shaker channel properties, we performed subdomain swapping between the C-linker of two Arabidopsis (Arabidopsis thaliana) Shaker subunits, K(+) channel in Arabidopsis thaliana2 (KAT2) and Arabidopsis thaliana K(+) rectifying channel1 (AtKC1). These two subunits contribute to K(+) transport in planta by forming heteromeric channels with other Shaker subunits. However, they display contrasting behavior when expressed in tobacco mesophyll protoplasts: KAT2 forms homotetrameric channels active at the plasma membrane, whereas AtKC1 is retained in the endoplasmic reticulum when expressed alone. The resulting chimeric/mutated constructs were analyzed for subcellular localization and functionally characterized. We identified two contiguous amino acids, valine-381 and serine-382, located in the C-linker carboxy-terminal end, which prevent KAT2 surface expression when mutated into the equivalent residues from AtKC1. Moreover, we demonstrated that the nine-amino acid stretch 312TVRAASEFA320 that composes the first C-linker α-helix located just below the pore is a crucial determinant of KAT2 channel activity. A KAT2 C-linker/CNBD three-dimensional model, based on animal HCN (for Hyperpolarization-activated, cyclic nucleotide-gated K(+)) channels as structure templates, has been built and used to discuss the role of the C-linker in plant Shaker inward channel structure and function.

PMID:
24406792
PMCID:
PMC3938630
DOI:
10.1104/pp.113.229757
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center