In vivo theranostics at the peri-infarct region in cerebral ischemia

Theranostics. 2013 Dec 12;4(1):90-105. doi: 10.7150/thno.7088. eCollection 2013.

Abstract

The use of theranostics in neurosciences has been rare to date because of the limitations imposed on the free delivery of substances to the brain by the blood-brain barrier. Here we report the development of a theranostic system for the treatment of stroke, a leading cause of death and disability in developed countries. We first performed a series of proteomic, immunoblotting and immunohistological studies to characterize the expression of molecular biomarkers for the so-called peri-infarct tissue, a key region of the brain for stroke treatment. We confirmed that the HSP72 protein is a suitable biomarker for the peri-infarct region, as it is selectively expressed by at-risk tissue for up to 7 days following cerebral ischemia. We also describe the development of anti-HSP72 vectorized stealth immunoliposomes containing imaging probes to make them traceable by conventional imaging techniques (fluorescence and MRI) that were used to encapsulate a therapeutic agent (citicoline) for the treatment of cerebral ischemia. We tested the molecular recognition capabilities of these nano-platforms in vitro together with their diagnostic and therapeutic properties in vivo, in an animal model of cerebral ischemia. Using MRI, we found that 80% of vectorized liposomes were located on the periphery of the ischemic lesion, and animals treated with citicoline encapsulated on these liposomes presented lesion volumes up to 30% smaller than animals treated with free (non-encapsulated) drugs. Our results show the potential of nanotechnology for the development of effective tools for the treatment of neurological diseases.

Keywords: Drug delivery.; MRI; Theranostics; cerebral ischemia; peri-infarct region.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Cells, Cultured
  • Cytidine Diphosphate Choline / pharmacokinetics
  • Cytidine Diphosphate Choline / therapeutic use
  • HSP72 Heat-Shock Proteins / genetics
  • HSP72 Heat-Shock Proteins / metabolism
  • Infarction, Middle Cerebral Artery / diagnosis
  • Infarction, Middle Cerebral Artery / drug therapy*
  • Infarction, Middle Cerebral Artery / metabolism
  • Liposomes / pharmacokinetics
  • Liposomes / therapeutic use
  • Magnetic Resonance Imaging / methods
  • Male
  • Microscopy, Fluorescence / methods
  • Nanocapsules / therapeutic use*
  • Nootropic Agents / pharmacokinetics
  • Nootropic Agents / therapeutic use
  • Optical Imaging / methods
  • Proteome / genetics
  • Proteome / metabolism
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Biomarkers
  • HSP72 Heat-Shock Proteins
  • Liposomes
  • Nanocapsules
  • Nootropic Agents
  • Proteome
  • Cytidine Diphosphate Choline