Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013 Dec 31;8(12):e84439. doi: 10.1371/journal.pone.0084439. eCollection 2013.

Effective identification of Gram-negative bacterial type III secreted effectors using position-specific residue conservation profiles.

Author information

1
College of Chemistry, Sichuan University, Chengdu, P.R.China.

Abstract

BACKGROUND:

Type III secretion systems (T3SSs) are central to the pathogenesis and specifically deliver their secreted substrates (type III secreted proteins, T3SPs) into host cells. Since T3SPs play a crucial role in pathogen-host interactions, identifying them is crucial to our understanding of the pathogenic mechanisms of T3SSs. This study reports a novel and effective method for identifying the distinctive residues which are conserved different from other SPs for T3SPs prediction. Moreover, the importance of several sequence features was evaluated and further, a promising prediction model was constructed.

RESULTS:

Based on the conservation profiles constructed by a position-specific scoring matrix (PSSM), 52 distinctive residues were identified. To our knowledge, this is the first attempt to identify the distinct residues of T3SPs. Of the 52 distinct residues, the first 30 amino acid residues are all included, which is consistent with previous studies reporting that the secretion signal generally occurs within the first 30 residue positions. However, the remaining 22 positions span residues 30-100 were also proven by our method to contain important signal information for T3SP secretion because the translocation of many effectors also depends on the chaperone-binding residues that follow the secretion signal. For further feature optimisation and compression, permutation importance analysis was conducted to select 62 optimal sequence features. A prediction model across 16 species was developed using random forest to classify T3SPs and non-T3 SPs, with high receiver operating curve of 0.93 in the 10-fold cross validation and an accuracy of 94.29% for the test set. Moreover, when performing on a common independent dataset, the results demonstrate that our method outperforms all the others published to date. Finally, the novel, experimentally confirmed T3 effectors were used to further demonstrate the model's correct application. The model and all data used in this paper are freely available at http://cic.scu.edu.cn/bioinformatics/T3SPs.zip.

PMID:
24391954
PMCID:
PMC3877298
DOI:
10.1371/journal.pone.0084439
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center