Format

Send to

Choose Destination
J Physiol Pharmacol. 2013 Dec;64(6):711-7.

Apolipoprotein E4 allele is associated with substantial changes in the plasma lipids and hyaluronic acid content in patients with nonalcoholic fatty liver disease.

Author information

1
Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland. ewast@sci.pum.edu.pl.

Abstract

Fat may affect progression of liver damage in patients with non-alcoholic fatty liver disease (NAFLD). In this study we characterize the state of lipid metabolism in 22 patients with NAFLD and different Apo-E variants. Total concentration of plasma total fatty acids was quantified by gas chromatography, while their derivatives by liquid chromatography/tandem mass spectrometry (LC ESI MS/MS). The ratio of plasma saturated fatty acid to monounsaturated fatty acid increased, whereas the ratio of polyunsaturated fatty acids to saturated fatty acids was reduced in Apo-E4 carriers. Simultaneously, the levels of individual plasma linoleic, arachidonic, and alpha linolenic acids significantly increased in subjects with the Apo-E4 allele. The 15-lipoxygenase metabolite, 13-hydroxyoctadecadienoic acid, was significantly higher in Apo-E3 carriers (p<0.006). 5-oxo-6,8,11,14-eicosatetraenoic acid was significantly elevated in Apo-E4 carriers (p<0.009). A significant difference in hyaluronic acid concentration (p<0.0016) as well as predicted advanced fibrosis (using the BARD scoring system) was found in Apo-E4 carriers (p<0.01). We suggest that a distinct mechanism of fibrosis between Apo E alleles. In Apo-E4 carriers, an elevation in 5-oxo-6,8,11,14-eicosatetraenoic acid synthesis and fatty acid dysfunction may induce fibrosis, while an inflammatory process may be the main cause of fibrosis in Apo-E3 carriers.

PMID:
24388885
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Institute of Pharmacology Polish Academy of Sciences
Loading ...
Support Center