Send to

Choose Destination
See comment in PubMed Commons below
Br J Nutr. 2014 Jun;111 Suppl 1:S23-9. doi: 10.1017/S0007114513002262. Epub 2014 Jan 2.

Endocrine taste cells.

Author information

Monell Chemical Senses Center,3500 Market Street,Philadelphia,PA19104,USA.
The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet,Stockholm,Sweden.
Institute for Innovation, Ajinomoto Company, Inc., Kawasaki-ku,Kawasaki,Japan.


In taste cells, taste receptors, their coupled G proteins and downstream signalling elements mediate the detection and transduction of sweet, bitter and umami compounds. In some intestinal endocrine cells, taste receptors and gustducin contribute to the release of glucagon-like peptide 1 (GLP-1) and other gut hormones in response to glucose and non-energetic sweeteners. Conversely, taste cells have been found to express multiple hormones typically found in intestinal endocrine cells, e.g. GLP-1, glucagon, somatostatin and ghrelin. In the present study, by immunohistochemistry, multiple subsets of taste cells were found to express GLP-1. The release of GLP-1 from 'endocrine taste cells' into the bloodstream was examined. In wild-type mice, even after oesophagectomy and vagotomy, oral stimulation with glucose induced an elevation of GLP-1 levels in the bloodstream within 10 min. Stimulation of taste cell explants from wild-type mice with glucose led to the release of GLP-1 into the medium. Knocking out of the Tas1r3 gene did not eliminate glucose-stimulated GLP-1 release from taste cells in vivo. The present results indicate that a portion of the cephalic-phase rise in circulating GLP-1 levels is mediated by the direct release of GLP-1 from taste cells into the bloodstream.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Cambridge University Press Icon for PubMed Central
    Loading ...
    Support Center