Format

Send to

Choose Destination
Ther Hypothermia Temp Manag. 2013 Dec 1;3(4):178-188.

Limitations of Mild, Moderate, and Profound Hypothermia in Protecting Developing Hippocampal Neurons After Simulated Ischemia.

Author information

1
Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California at San Francisco , San Francisco, California.

Abstract

Mild hypothermia (33°C-34°C) after cerebral ischemia in intact animals or ischemia-like conditions in vitro reduces neuron death. However, it is now clear that more profound hypothermia or delayed hypothermia may not provide significant protection. To further define the limitations of hypothermia after cerebral ischemia, we used hippocampal slice cultures to examine the effects of various degrees, durations, and delays of hypothermia on neuron death after an ischemia-like insult. Organotypic cultures of the hippocampus from 7- to 8 day-old rat pups were cooled to 32°C, 23°C, 17°C, or 4°C immediately or after a 2-4 hour delay from an injurious insult of oxygen and glucose deprivation (OGD). Cell death in CA1, CA3 and dentate regions of the cultures was assessed 24 hours later with SYTOX® or propidium iodide, both of which are fluorescent markers labeling damaged cells. OGD caused extensive cell death in CA1, CA3, and dentate regions of the hippocampal cultures. Hypothermia (32°C, 23°C and 17°C) for 4-6 hours immediately after OGD was protective at 24 hours, but when hypothermia was applied for longer periods or delayed after OGD, no protection or increased death was seen. Ultra-profound hypothermia (4°C) increased cell death in all cell areas of the hippocampus even when after a milder insult of only hypoxia. In an in vitro model of recovery after an ischemia-like insult, mild to profound hypothermia is protective only when applied without delay and for limited periods of time (6-8 hours). Longer durations of hypothermia, or delayed application of the hypothermia can increase neuron death. These findings may have implications for clinical uses of therapeutic hypothermia after hypoxic or ischemic insults, and suggest that further work is needed to elucidate the limitations of hypothermia as a protective treatment after ischemic stress.

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center