Format

Send to

Choose Destination
J Comput Chem. 2014 Jan 30;35(3):192-8. doi: 10.1002/jcc.23472. Epub 2013 Oct 28.

Assessing protein-ligand docking for the binding of organometallic compounds to proteins.

Author information

1
Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

Abstract

Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein-ligand complementarities. Interestingly, while protein-ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state-of-the-art protein-ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein.

KEYWORDS:

computational bioinorganics; drug design; kinase inhibition; metalodrugs; protein-ligand dockings

PMID:
24375319
DOI:
10.1002/jcc.23472
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center