Format

Send to

Choose Destination
Prog Mol Biol Transl Sci. 2014;121:351-76. doi: 10.1016/B978-0-12-800101-1.00011-9.

The impact of dietary methionine restriction on biomarkers of metabolic health.

Author information

1
Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.

Abstract

Calorie restriction without malnutrition, commonly referred to as dietary restriction (DR), results in a well-documented extension of life span. DR also produces significant, long-lasting improvements in biomarkers of metabolic health that begin to accrue soon after its introduction. The improvements are attributable in part to the effects of DR on energy balance, which limit fat accumulation through reduction in energy intake. Accumulation of excess body fat occurs when energy intake chronically exceeds the energy costs for growth and maintenance of existing tissue. The resulting obesity promotes the development of insulin resistance, disordered lipid metabolism, and increased expression of inflammatory markers in peripheral tissues. The link between the life-extending effects of DR and adiposity is the subject of an ongoing debate, but it is clear that decreased fat accumulation improves insulin sensitivity and produces beneficial effects on overall metabolic health. Over the last 20 years, dietary methionine restriction (MR) has emerged as a promising DR mimetic because it produces a comparable extension in life span, but surprisingly, does not require food restriction. Dietary MR also reduces adiposity but does so through a paradoxical increase in both energy intake and expenditure. The increase in energy expenditure fully compensates for increased energy intake and effectively limits fat deposition. Perhaps more importantly, the diet increases metabolic flexibility and overall insulin sensitivity and improves lipid metabolism while decreasing systemic inflammation. In this chapter, we describe recent advances in our understanding of the mechanisms and effects of dietary MR and discuss the remaining obstacles to implementing MR as a treatment for metabolic disease.

KEYWORDS:

Amino acid sensing; Animal models; Dietary protein; Insulin sensitivity; Obesity

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center