Format

Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2014 Feb 6;123(6):851-62. doi: 10.1182/blood-2013-05-504084. Epub 2013 Dec 26.

Gadd45a regulates hematopoietic stem cell stress responses in mice.

Author information

1
Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China;

Abstract

Gadd45a has been involved in DNA damage response and in many malignancies, including leukemia. However, the function of Gadd45a in hematopoietic stem cells (HSCs) remains unknown. Here, we reported that Gadd45a-deficient (Gadd45a(-/-)) mice showed a normal hematologic phenotype under homeostatic conditions. However, following 5-fluorouracil treatment, Gadd45a(-/-) HSCs exhibited a faster recovery, associated with an increase in the proliferation rate. Interestingly, young Gadd45a(-/-) HSCs showed enhanced reconstitution ability in serial transplantation. Following ionizing radiation (IR), young Gadd45a(-/-) HSCs exhibited an increased resistance to IR-induced DNA damage, associated with a decrease in the apoptosis rate and delayed DNA repair. The significantly higher level of DNA damage in Gadd45a(-/-) HSCs ultimately promoted B-cell leukemia in further transplanted recipient mice. In old mice, Gadd45a(-/-) HSCs were functionally equal to wild-type HSCs but exhibited more DNA damage accumulation and increased sensitivity to IR than wild-type HSCs. In conclusion, Gadd45a plays a significant role in HSC stress responses. Gadd45a deficiency leads to DNA damage accumulation and impairment in apoptosis after exposure to IR, which increases the susceptibility of leukemogenesis.

PMID:
24371210
DOI:
10.1182/blood-2013-05-504084
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center