Format

Send to

Choose Destination
J Colloid Interface Sci. 2014 Feb 15;416:139-46. doi: 10.1016/j.jcis.2013.10.058. Epub 2013 Nov 8.

Phase behavior of reverse microemulsions based on Peceol(®).

Author information

1
Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM2-UM1, Equipe MACS, 8 rue de l'Ecole Normale, 34296 Montpellier, France; Medesis Pharma, Avenue du Golf, L'Orée des Mas, Les Cyprès, 34670 Baillargues, France.
2
Institut de Chimie Séparative de Marcoule, ICSM UMR 5257 (CEA/CNRS/UM2/ENSCM), 30206 Bagnols sur Cèze, France.
3
Institut des Biomolécules Max Mousseron, UMR CNRS 5247, Université de Montpellier I, 34060 Montpellier, France.
4
Medesis Pharma, Avenue du Golf, L'Orée des Mas, Les Cyprès, 34670 Baillargues, France.
5
Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM2-UM1, Equipe MACS, 8 rue de l'Ecole Normale, 34296 Montpellier, France.
6
Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM2-UM1, Equipe MACS, 8 rue de l'Ecole Normale, 34296 Montpellier, France. Electronic address: philippe.legrand@univ-montp1.fr.

Abstract

The phase diagram of the four component system Peceol®/lecithin/ethanol/water was studied at 25°C and at a fixed fraction of ethanol. It shows an isotropic W/O microemulsion phase, biphasic liquid system and Liquid crystalline phases. The stabilizing effect of lecithin with the fluidifying effect of ethanol on the microemulsion based on long chain glycerides provides an effective combination to solubilize a large amount of water. Some structural transitions in the phase diagram were investigated as a function of water content using conductivity, rheology, Karl Fisher titration, optical microscopy and SAXS measurements. The results show no change in the microstructure of the isotropic liquid upon phase separation in the liquid biphasic area. However, in the water rich region, migration of ethanol to the external aqueous phase at the expense of the saturated microemulsion promotes the formation of liquid crystalline phases. As a function of water content, the structural change to the liquid crystalline phases follows: isotropic phase L2 → Inverted hexagonal phase H2 → Inverted hexagonal H2/lamellar Lα phases.

KEYWORDS:

Microemulsion; Phase diagram; Phase transitions; Polar lipids; Rheology; SAXS

PMID:
24370413
DOI:
10.1016/j.jcis.2013.10.058
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center