Format

Send to

Choose Destination
PLoS One. 2013 Dec 18;8(12):e85189. doi: 10.1371/journal.pone.0085189. eCollection 2013.

Contribution of Drosophila TRPA1-expressing neurons to circadian locomotor activity patterns.

Author information

1
Departments of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Korea.

Abstract

In both vertebrates and invertebrates, Transient Receptor Potential (TRP) channels are expressed in sensory neurons and mediate environmental stimuli such as light, sound, temperature, and taste. Some of these channels, however, are expressed only in the brain and their functions remain incompletely understood. Using the GAL4/UAS binary system with a line in which the GAL4 had been knocked into the trpA1 locus in Drosophila, we recently reported new insights into TRPA1 localization and function, including its expression in approximately 15% of all circadian neurons. TRPA1 is expressed in lateral posterior neurons (LPNs), which are known to be highly sensitive to entrainment by temperature cycles. Here, I used the bacterial sodium channel, NaChBac, to examine the effects of altering the electrical properties of trpA1 neurons on circadian rhythms. My results indicate that circadian activity of the flies in the morning, daytime, and evening was affected in a temperature-dependent manner following TRPA1 neuronal activation. Remarkably, TRPA1 neuron activation in flies kept at 18°C impacted the morning peak of circadian activity even though TRPA1 is not expressed in morning cells. Taken together, these results suggest that the activation of TRPA1-expressing neurons may differentially coordinate light/dark circadian entrainment, depending on the temperature.

PMID:
24367706
PMCID:
PMC3867552
DOI:
10.1371/journal.pone.0085189
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center