Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Rep. 2013 Dec 26;5(6):1725-36. doi: 10.1016/j.celrep.2013.11.040. Epub 2013 Dec 19.

Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae.

Author information

1
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA.
2
Department of Chemistry, Princeton University, Princeton, NJ 08540, USA.
3
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA; School of Computer Science and Informatics, University College Dublin, Dublin 4, Ireland.
4
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA.
5
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA.
6
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA. Electronic address: kevan.shokat@ucsf.edu.

Abstract

Current approaches for identifying synergistic targets use cell culture models to see if the combined effect of clinically available drugs is better than predicted by their individual efficacy. New techniques are needed to systematically and rationally identify targets and pathways that may be synergistic targets. Here, we created a tool to screen and identify molecular targets that may synergize with new inhibitors of target of rapamycin (TOR), a conserved protein that is a major integrator of cell proliferation signals in the nutrient-signaling pathway. Although clinical results from TOR complex 1 (TORC1)-specific inhibition using rapamycin analogs have been disappointing, trials using inhibitors that also target TORC2 have been promising. To understand this increased therapeutic efficacy and to discover secondary targets for combination therapy, we engineered Tor2 in S. cerevisiae to accept an orthogonal inhibitor. We used this tool to create a chemical epistasis miniarray profile (ChE-MAP) by measuring interactions between the chemically inhibited Tor2 kinase and a diverse library of deletion mutants. The ChE-MAP identified known TOR components and distinguished between TORC1- and TORC2-dependent functions. The results showed a TORC2-specific interaction with the pentose phosphate pathway, a previously unappreciated TORC2 function that suggests a role for the complex in balancing the high energy demand required for ribosome biogenesis.

PMID:
24360963
PMCID:
PMC4007695
DOI:
10.1016/j.celrep.2013.11.040
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center