Format

Send to

Choose Destination
See comment in PubMed Commons below
Microb Biotechnol. 2014 Mar;7(2):142-54. doi: 10.1111/1751-7915.12105. Epub 2013 Dec 19.

A new species of Burkholderia isolated from sugarcane roots promotes plant growth.

Author information

1
School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, 4072, Australia; ARC Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Qld, 4072, Australia.

Abstract

Sugarcane is a globally important food, biofuel and biomaterials crop. High nitrogen (N) fertilizer rates aimed at increasing yield often result in environmental damage because of excess and inefficient application. Inoculation with diazotrophic bacteria is an attractive option for reducing N fertilizer needs. However, the efficacy of bacterial inoculants is variable, and their effective formulation remains a knowledge frontier. Here, we take a new approach to investigating diazotrophic bacteria associated with roots using culture-independent microbial community profiling of a commercial sugarcane variety (Q208(A) ) in a field setting. We first identified bacteria that were markedly enriched in the rhizosphere to guide isolation and then tested putative diazotrophs for the ability to colonize axenic sugarcane plantlets (Q208(A) ) and promote growth in suboptimal N supply. One isolate readily colonized roots, fixed N2 and stimulated growth of plantlets, and was classified as a new species, Burkholderia australis sp. nov. Draft genome sequencing of the isolate confirmed the presence of nitrogen fixation. We propose that culture-independent identification and isolation of bacteria that are enriched in rhizosphere and roots, followed by systematic testing and confirming their growth-promoting capacity, is a necessary step towards designing effective microbial inoculants.

PMID:
24350979
PMCID:
PMC3937718
DOI:
10.1111/1751-7915.12105
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center