Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013 Dec 13;8(12):e82495. doi: 10.1371/journal.pone.0082495. eCollection 2013.

Molecular evolution and diversity of Conus peptide toxins, as revealed by gene structure and intron sequence analyses.

Author information

1
Beijing University of Chinese Medicine, Beijing, China.
2
State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China.
3
State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China ; Beijing University of Chinese Medicine, Beijing, China.

Erratum in

  • PLoS One. 2013;8(12). doi:10.1371/annotation/98e70cd9-f5d7-4937-bdbc-c68bde86e8cf.

Abstract

Cone snails, which are predatory marine gastropods, produce a cocktail of venoms used for predation, defense and competition. The major venom component, conotoxin, has received significant attention because it is useful in neuroscience research, drug development and molecular diversity studies. In this study, we report the genomic characterization of nine conotoxin gene superfamilies from 18 Conus species and investigate the relationships among conotoxin gene structure, molecular evolution and diversity. The I1, I2, M, O2, O3, P, S, and T superfamily precursors all contain three exons and two introns, while A superfamily members contain two exons and one intron. The introns are conserved within a certain gene superfamily, and also conserved across different Conus species, but divergent among different superfamilies. The intronic sequences contain many simple repeat sequences and regulatory elements that may influence conotoxin gene expression. Furthermore, due to the unique gene structure of conotoxins, the base substitution rates and the number of positively selected sites vary greatly among exons. Many more point mutations and trinucleotide indels were observed in the mature peptide exon than in the other exons. In addition, the first example of alternative splicing in conotoxin genes was found. These results suggest that the diversity of conotoxin genes has been shaped by point mutations and indels, as well as rare gene recombination or alternative splicing events, and that the unique gene structures could have made a contribution to the evolution of conotoxin genes.

PMID:
24349297
PMCID:
PMC3862624
DOI:
10.1371/journal.pone.0082495
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center