Format

Send to

Choose Destination
Nat Commun. 2013;4:3013. doi: 10.1038/ncomms4013.

Topological structure dynamics revealing collective evolution in active nematics.

Author information

1
1] Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China [2] National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.

Abstract

Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard elliptic rods, that the excitation, annihilation and transportation of topological defects differ markedly from those in non-active media. These dynamical processes exhibit strong irreversibility in active nematics in the absence of detailed balance. Moreover, topological defects are the key factors in organizing large-scale dynamic structures and collective flows, resulting in multi-spatial temporal effects. These findings allow us to control the self-organization of active matter through topological structures.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center