Send to

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2014 Jan 8;6(1):194-9. doi: 10.1021/am4038728. Epub 2013 Dec 23.

Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.

Author information

College of Materials Science & Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing, 210016, P. R. China.


Lithium-sulfur (Li-S) batteries are deemed to be a promising energy storage device for next-generation high energy power system. However, insulation of S and dissolution of lithium polysulfides in the electrolyte lead to low utilization of sulfur and poor cycling performance, which seriously hamper the rapid development of Li-S batteries. Herein, we reported that encapsulating sulfur into hierarchically porous carbon (HPC) derived from the soluble starch with a template of needle-like nanosized Mg(OH)2. HPC has a relatively high specific surface area of 902.5 m(2) g(-1) and large total pore volume of 2.60 cm(3) g(-1), resulting that a weight percent of sulfur in S/HPC is up to 84 wt %. When evaluated as cathodes for Li-S batteries, the S/HPC composite has a high discharge capacity of 1249 mAh g(-1) in the first cycle and a Coulombic efficiency as high as 94% with stable cycling over prolonged 100 charge/discharge cycles at a high current density of 1675 mA g(-1). The superior electrochemical performance of S/HPC is closely related to its unique structure, exhibiting the graphitic structure with a high developed porosity framework of macropores in combination with mesopores and micropores. Such nanostructure could shorten the transport pathway for both ions and electrons during prolonged cycling.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center