Send to

Choose Destination
See comment in PubMed Commons below
Nanoscale. 2014;6(3):1725-31. doi: 10.1039/c3nr05551e.

Synthesis of Mn₂O₃ nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance.

Author information

Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.


Mn₂O₃ has been demonstrated to be a promising electrode material for lithium-ion batteries. Thus, the fabrication of Mn₂O₃ nanomaterials with high specific capacity and cycling stability is greatly desired. Here we report a simple but effective method to synthesis Mn₂O₃ nanomaterials from a Mn(OH)₂ precursor, which was prepared from manganese acetate in ethylene glycol and water at 180 °C for 12 h. The morphology and sheet thickness of Mn(OH)₂ precursor could be tuned by controlling the ethylene glycol/H₂O volume ratio, resulting in a further tunable morphology and sheet thickness of the porous Mn₂O₃ nanomaterials. In the electrochemical tests the prepared Mn₂O₃ nanomaterials, with the porous architecture and thin thickness exhibited a high and stable reversible capacity, indicating that both small thickness and porous sheets structure are crucial for improving the electrochemical performance of Mn₂O₃ in terms of specific capacity and stability.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center