Format

Send to

Choose Destination
See comment in PubMed Commons below
Hippocampus. 2014 Mar;24(3):354-62. doi: 10.1002/hipo.22229. Epub 2013 Dec 13.

Dentate gyrus mediates cognitive function in the Ts65Dn/DnJ mouse model of Down syndrome.

Author information

1
Center for Integrated Neuroscience & Human Behavior, Department of Pediatrics, University of Utah, Salt Lake City, Utah.

Abstract

In the Ts65Dn/DnJ mouse model of Down syndrome (DS), hippocampal deficits of learning and memory are the most robust features supporting this mouse as a valid cognitive model of DS. Although dentate gyrus (DG) dysfunction is suggested by excessive GABAergic inhibition, its role in perturbing DG functions in DS is unknown. We hypothesize that in the Ts65Dn/DnJ mouse, the specific role of the DG is disturbed in its support of contextual and spatial information. Support for this hypothesis comes from rats with DG lesions that show similar deficits. In order to test this hypothesis, we have developed a novel series of spontaneous exploratory tasks that emphasize the importance of recognizing spatial and contextual cues and that involve DG function. The results with this exploratory battery show that Ts65Dn/DnJ mice are impaired in DG-dependent short-term recognition tests involving object recognition with contextual cues, in place recognition and in metric distance recognition relative to wild type littermate controls. Further, whereas Ts65Dn/DnJ mice can recognize object novelty in the absence of contextual cues after a 5-min delay, they cannot do so after a delay of 24 h, suggesting a problem with CA1-mediated consolidation. The results also show that Ts65Dn/DnJ mice are not impaired in tasks (object recognition and configural object recognition) that are mediated by the perirhinal cortex (PRh). These results implicate the DG as a specific therapeutic target and the PRh as a potential therapeutic strength for future research to ameliorate learning and memory in DS.

KEYWORDS:

configural object recognition; developmental disorders; hippocampus; object recognition; spatial location recognition

PMID:
24339224
PMCID:
PMC4480980
DOI:
10.1002/hipo.22229
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center