Format

Send to

Choose Destination
See comment in PubMed Commons below
Microb Ecol. 2014 Feb;67(2):380-91. doi: 10.1007/s00248-013-0337-6. Epub 2013 Dec 14.

Role of house flies in the ecology of Enterococcus faecalis from wastewater treatment facilities.

Author information

1
Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.

Abstract

Enterococci are important nosocomial pathogens, with Enterococcus faecalis most commonly responsible for human infections. In this study, we used several measures to test the hypothesis that house flies, Musca domestica (L.), acquire and disseminate antibiotic-resistant and potentially virulent E. faecalis from wastewater treatment facilities (WWTF) to the surrounding urban environment. House flies and sludge from four WWTF (1-4) as well as house flies from three urban sites close to WWTF-1 were collected and cultured for enterococci. Enterococci were identified, quantified, screened for antibiotic resistance and virulence traits, and assessed for clonality. Of the 11 antibiotics tested, E. faecalis was most commonly resistant to tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin, and these traits were intra-species horizontally transferrable by in vitro conjugation. Profiles of E. faecalis (prevalence, antibiotic resistance, and virulence traits) from each of WWTF sludge and associated house flies were similar, indicating that flies successfully acquired these bacteria from this substrate. The greatest number of E. faecalis with antibiotic resistance and virulence factors (i.e., gelatinase, cytolysin, enterococcus surface protein, and aggregation substance) originated from WWTF-1 that processed meat waste from a nearby commercial meat-processing plant, suggesting an agricultural rather than human clinical source of these isolates. E. faecalis from house flies collected from three sites 0.7-1.5 km away from WWTF-1 were also similar in their antibiotic resistance profiles; however, antibiotic resistance was significantly less frequent. Clonal diversity assessment using pulsed-field gel electrophoresis revealed the same clones of E. faecalis from sludge and house flies from WWTF-1 but not from the three urban sites close to WWTF-1. This study demonstrates that house flies acquire antibiotic-resistant enterococci from WWTF and potentially disseminate them to the surrounding environment.

PMID:
24337146
DOI:
10.1007/s00248-013-0337-6
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center