Send to

Choose Destination
See comment in PubMed Commons below
Cell Death Differ. 2014 Apr;21(4):568-81. doi: 10.1038/cdd.2013.177. Epub 2013 Dec 13.

Calcium deficiency-induced and TRP channel-regulated IGF1R-PI3K-Akt signaling regulates abnormal epithelial cell proliferation.

Author information

Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
1] Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA [2] Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.


Calcium deficiency causes abnormal colonic growth and increases colon cancer risk with poorly understood mechanisms. Here we elucidate a novel signaling mechanism underlying the Ca(2+) deficiency-induced epithelial proliferation using a unique animal model. The zebrafish larval yolk sac skin contains a group of Ca(2+)-transporting epithelial cells known as ionocytes. Their number and density increases dramatically when acclimated to low [Ca(2+)] environments. BrdU pulse-labeling experiments suggest that low [Ca(2+)] stimulates pre-existing ionocytes to re-enter the cell cycle. Low [Ca(2+)] treatment results in a robust and sustained activation of IGF1R-PI3K-Akt signaling in these cells exclusively. These ionocytes specifically express Igfbp5a, a high-affinity and specific binding protein for insulin-like growth factors (IGFs) and the Ca(2+)-selective channel Trpv5/6. Inhibition or knockdown of Igfbp5a, IGF1 receptor, PI3K, and Akt attenuates low [Ca(2+)]-induced ionocyte proliferation. The role of Trpv5/6 was investigated using a genetic mutant, targeted knockdown, and pharmacological inhibition. Loss-of-Trpv5/6 function or expression results in elevated pAkt levels and increased ionocyte proliferation under normal [Ca(2+)]. These increases are eliminated in the presence of an IGF1R inhibitor, suggesting that Trpv5/6 represses IGF1R-PI3K-Akt signaling under normal [Ca(2+)]. Intriguingly, blockade of Trpv5/6 activity inhibits the low [Ca(2+)]-induced activation of Akt. Mechanistic analyses reveal that the low [Ca(2+)]-induced IGF signaling is mediated through Trpv5/6-associated membrane depolarization. Low extracellular [Ca(2+)] results in a similar amplification of IGF-induced PI3K-PDK1-Akt signaling in human colon cancer cells in a TRPV6-dependent manner. These results uncover a novel and evolutionarily conserved signaling mechanism that contributes to the abnormal epithelial proliferation associated with Ca(2+) deficiency.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center