Format

Send to

Choose Destination
See comment in PubMed Commons below
Investig Genet. 2013 Dec 11;4(1):27. doi: 10.1186/2041-2223-4-27.

Metabarcoding avian diets at airports: implications for birdstrike hazard management planning.

Author information

1
Australian Wildlife Forensic Services and Ancient DNA Laboratory, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia. m.bunce@icloud.com.

Abstract

BACKGROUND:

Wildlife collisions with aircraft cost the airline industry billions of dollars per annum and represent a public safety risk. Clearly, adapting aerodrome habitats to become less attractive to hazardous wildlife will reduce the incidence of collisions. Formulating effective habitat management strategies relies on accurate species identification of high-risk species. This can be successfully achieved for all strikes either through morphology and/or DNA-based identifications. Beyond species identification, dietary analysis of birdstrike gut contents can provide valuable intelligence for airport hazard management practices in regards to what food is attracting which species to aerodromes. Here, we present birdstrike identification and dietary data from Perth Airport, Western Australia, an aerodrome that saw approximately 140,000 aircraft movements in 2012. Next-generation high throughput DNA sequencing was employed to investigate 77 carcasses from 16 bird species collected over a 12-month period. Five DNA markers, which broadly characterize vertebrates, invertebrates and plants, were used to target three animal mitochondrial genes (12S rRNA, 16S rRNA, and COI) and a plastid gene (trnL) from DNA extracted from birdstrike carcass gastrointestinal tracts.

RESULTS:

Over 151,000 DNA sequences were generated, filtered and analyzed by a fusion-tag amplicon sequencing approach. Across the 77 carcasses, the most commonly identified vertebrate was Mus musculus (house mouse). Acrididae (grasshoppers) was the most common invertebrate family identified, and Poaceae (grasses) the most commonly identified plant family. The DNA-based dietary data has the potential to provide some key insights into feeding ecologies within and around the aerodrome.

CONCLUSIONS:

The data generated here, together with the methodological approach, will greatly assist in the development of hazard management plans and, in combination with existing observational studies, provide an improved way to monitor the effectiveness of mitigation strategies (for example, netting of water, grass type, insecticides and so on) at aerodromes. It is hoped that with the insights provided by dietary data, airports will be able to allocate financial resources to the areas that will achieve the best outcomes for birdstrike reduction.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center