Format

Send to

Choose Destination
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):050803. Epub 2013 Nov 15.

Triple point in correlated interdependent networks.

Author information

1
Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, Funes 3350, (7600) Mar del Plata, Argentina.
2
Center for Polymer Studies, Boston University, Boston, Massachusetts 02215, USA.
3
Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, Funes 3350, (7600) Mar del Plata, Argentina and Center for Polymer Studies, Boston University, Boston, Massachusetts 02215, USA.

Abstract

Many real-world networks depend on other networks, often in nontrivial ways, to maintain their functionality. These interdependent "networks of networks" are often extremely fragile. When a fraction 1-p of nodes in one network randomly fails, the damage propagates to nodes in networks that are interdependent and a dynamic failure cascade occurs that affects the entire system. We present dynamic equations for two interdependent networks that allow us to reproduce the failure cascade for an arbitrary pattern of interdependency. We study the "rich club" effect found in many real interdependent network systems in which the high-degree nodes are extremely interdependent, correlating a fraction α of the higher-degree nodes on each network. We find a rich phase diagram in the plane p-α, with a triple point reminiscent of the triple point of liquids that separates a nonfunctional phase from two functional phases.

PMID:
24329204
DOI:
10.1103/PhysRevE.88.050803

Supplemental Content

Loading ...
Support Center