Format

Send to

Choose Destination
Rocz Panstw Zakl Hig. 2013;64(3):165-71.

Magnesium: its role in nutrition and carcinogenesis.

Author information

1
Department of Fermentation Technology and Technical Microbiology, Agricultural University in Krakow, Poland. ublaszczyk@ur.krakow.pl

Abstract

Magnesium (Mg2+) plays a key role in many essential cellular processes such as intermediary metabolism, DNA replication and repair, transporting potassium and calcium ions, cell proliferation together with signalling transduction. Dietary sources rich in magnesium are whole and unrefined grains, seeds, cocoa, nuts, almonds and green leafy vegetables. Hard water is also considered to be an important source of magnesium beneficial to human health. The daily dietary intake of magnesium is however frequently found to be below that recommended in Western countries. Indeed, it is recognised that magnesium deficiency may lead to many disorders of the human body, where for instance magnesium depletion is believed to play an important role in the aetiology of the following; cardiovascular disease (including thrombosis, atherosclerosis, ishaemic heart disease, myocardial infarction, hypertension, arrhythmias and congestive heart failure in human), as well as diabetes mellitus, gastrointestinal (GI) tract disease, liver cirrhosis and diseases of the thyroid and parathyroid glands. Insufficient dietary intake of magnesium may also significantly affect the development and exacerbation ofADHD (Attention Deficit- Hyperactivity Disorder) symptoms in children. The known links between magnesium and carcinogenesis still remain unclear and complex, with conflicting results being reported from many experimental, epidemiological and clinical studies; further knowledge is thus required. Mg2+ ions are enzyme cofactors involved in DNA repair mechanisms that maintain genomic stability and fidelity. Any magnesium deficiencies could thereby cause a dysfunction of these systems to occur leading to DNA mutations. Magnesium deficiency may also be associated with inflammation and increased levels of free radicals where both inflammatory mediators and free radicals so arising could cause oxidative DNA damage and therefore tumour formation. The presented review article now provides a summary discussion of the various research performed concerning the impact that low magnesium intake has on tumour incidence; this includes impairment of magnesium homeostasis frequently observed in tumour cells, the influence of magnesium depletion on the progression of existing tumours and the occurrence of hypo-magnesaemia when patients are treated with certain anticancer drugs.

PMID:
24325082
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for National Institute of Public Health - National Institute of Hygiene (NIPH-NIH), Poland
Loading ...
Support Center