Send to

Choose Destination
See comment in PubMed Commons below
Zhongguo Zhong Xi Yi Jie He Za Zhi. 2013 Aug;33(8):1129-34.

[Genomics research on roles of yishen kangxian compound in the TEMT process of HK-2 cells].

[Article in Chinese]

Author information

Department of Traditional Chinese Medicine, Jiangsu Province Geriatric Hospital, Nanjing (210024), China.



To study effects of Yishen Kangxian Compound (YKC) and benazepril containing serums on HK-2 cells (human renal proximal tubule epithelial cells) in the process of renal tubular epithelial cells to mesenchymal myofibroblasts transdifferentiation (TEMT) by gene chip.


YKC and benazepril containing serums were prepared. Their inhibitory effects on HK-2 cells in the transforming growth factor-beta1 (TGF-beta1)-induced TEMT process were observed. HK-2 cells were randomly divided into four groups, i.e., the blank control group, the model group, the benazepril group, and the YKC group. The gross RNAs were extracted and purified by taking advantage of the HumanHT-12 v4 of IlluminaBeadChip. Differentially expressed genes were obtained after they were reversely transcribed to cDNA, incorporating biotin labeling probe, hybridized with GeneChip, picture signals of fluorescence in gene array scanned and compared with differential genes by computer analysis.


Differentially expressed genes were successfully identified by gene chip. Compared with the model group, there were 227 differentially expressed genes in the benazepril group, including 118 up-regulated genes and 109 downregulated genes. Compared with the model group, there were 97 differentially expressed genes in the YKC group, including 69 up-regulated genes and 28 down-regulated genes. The Gene Ontology (GO) analysis indicated that YKC was more actively involved in the regulatory process than benazepril in terms of cell damage, apoptosis, growth, NF-KB, protein kinase, neuron, and blood vessel growth.


YKC and benazepril could inhibit the TEMT process of HK-2 cells. But YKC also had taken part in cell damage, apoptosis, growth,and more pathways of early stage TEMT.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center