Format

Send to

Choose Destination
See comment in PubMed Commons below
Ecol Evol. 2013 Oct;3(12):4129-38. doi: 10.1002/ece3.777. Epub 2013 Sep 23.

Daphnia predation on the amphibian chytrid fungus and its impacts on disease risk in tadpoles.

Author information

1
School of Biology, Georgia Institute of Technology Atlanta, Georgia, 30332 ; Department of Ecology and Evolutionary Biology University of Michigan, 2019 Kraus Natural Science Building, 830 North University, Ann Arbor, MI 48109-1048.

Abstract

Direct predation upon parasites has the potential to reduce infection in host populations. For example, the fungal parasite of amphibians, Batrachochytrium dendrobatidis (Bd), is commonly transmitted through a free-swimming zoospore stage that may be vulnerable to predation. Potential predators of Bd include freshwater zooplankton that graze on organisms in the water column. We tested the ability of two species of freshwater crustacean (Daphnia magna and D. dentifera) to consume Bd and to reduce Bd density in water and infection in tadpoles. In a series of laboratory experiments, we allowed Daphnia to graze in water containing Bd while manipulating Daphnia densities, Daphnia species identity, grazing periods and concentrations of suspended algae (Ankistrodesmus falcatus). We then exposed tadpoles to the grazed water. We found that high densities of D. magna reduced the amount of Bd detected in water, leading to a reduction in the proportion of tadpoles that became infected. Daphnia dentifera, a smaller species of Daphnia, also reduced Bd in water samples, but did not have an effect on tadpole infection. We also found that algae affected Bd in complex ways. When Daphnia were absent, less Bd was detected in water and tadpole samples when concentrations of algae were higher, indicating a direct negative effect of algae on Bd. When Daphnia were present, however, the amount of Bd detected in water samples showed the opposite trend, with less Bd when densities of algae were lower. Our results indicate that Daphnia can reduce Bd levels in water and infection in tadpoles, but these effects vary with species, algal concentration, and Daphnia density. Therefore, the ability of predators to consume parasites and reduce infection is likely to vary depending on ecological context.

KEYWORDS:

Batrachochytrium dendrobatidis; Lithobates sphenocephalus; chytridiomycosis; eutrophication; parasites; trophic interactions

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center