Send to

Choose Destination
Cancer Res. 2014 Jan 15;74(2):446-59. doi: 10.1158/0008-5472.CAN-13-1677. Epub 2013 Dec 9.

Immune chaperone gp96 drives the contributions of macrophages to inflammatory colon tumorigenesis.

Author information

Authors' Affiliations: Departments of Microbiology and Immunology and Pathology and Laboratory Medicine; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina; and Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut.


Macrophages are important drivers in the development of inflammation-associated colon cancers, but the mechanistic underpinnings for their contributions are not fully understood. Furthermore, Toll-like receptors have been implicated in colon cancer, but their relevant cellular sites of action are obscure. In this study, we show that the endoplasmic reticulum chaperone gp96 is essential in tumor-associated macrophages (TAM) to license their contributions to inflammatory colon tumorigenesis. Mice where gp96 was genetically deleted in a macrophage-specific manner exhibited reduced colitis and inflammation-associated colon tumorigenesis. Attenuation of colon cancer in these mice correlated strikingly with reduced mutation rates of β-catenin, increased efficiency of the DNA repair machinery, and reduced expression of proinflammatory cytokines, including interleukin (IL)-17 and IL-23 in the tumor microenvironment. The genotoxic nature of TAM-associated inflammation was evident by increased expression of genes in the DNA repair pathway. Our work deepens understanding of how TAM promote oncogenesis by altering the molecular oncogenic program within epithelial cells, and it identifies gp96 as a lynchpin chaperone needed in TAM to license their function and impact on expression of critical inflammatory cytokines in colon tumorigenesis.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center