Format

Send to

Choose Destination
Sci Rep. 2013 Dec 10;3:3467. doi: 10.1038/srep03467.

Transcriptional signaling pathways inversely regulated in Alzheimer's disease and glioblastoma multiform.

Author information

1
1] Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030 [2].

Abstract

Convincing epidemiological data suggest an inverse association between cancer and neurodegeneration, including Alzheimer's disease (AD). Since both AD and cancer are characterized by abnormal, but opposing cellular behavior, i.e., increased cell death in AD while excessive cell growth occurs in cancer, this motivates us to initiate the study into unraveling the shared genes and cell signaling pathways linking AD and glioblastoma multiform (GBM). In this study, a comprehensive bioinformatics analysis on clinical microarray datasets of 1,091 GBM and 524 AD cohorts was performed. Significant genes and pathways were identified from the bioinformatics analyses - in particular ERK/MAPK signaling, up-regulated in GBM and Angiopoietin Signaling pathway, reciprocally up-regulated in AD - connecting GBM and AD (P < 0.001), were investigated in details for their roles in GBM growth in an AD environment. Our results showed that suppression of GBM growth in an AD background was mediated by the ERK-AKT-p21-cell cycle pathway and anti-angiogenesis pathway.

PMID:
24322672
PMCID:
PMC4894382
DOI:
10.1038/srep03467
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center