Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Toxicol. 2015 May;30(5):530-7. doi: 10.1002/tox.21929. Epub 2013 Dec 6.

The role of oxidative stress in citreoviridin-induced DNA damage in human liver-derived HepG2 cells.

Author information

1
Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA; Department of Food Nutrition and Safety, Dalian Medical University, No. 9, West Segment of South Lvshun Road, Dalian, 116044, Liaoning, China.

Abstract

We hypothesize that citreoviridin (CIT) induces DNA damage in human liver-derived HepG2 cells through an oxidative stress mechanism and that N-acetyl-l-cysteine (NAC) protects against CIT-induced DNA damage in HepG2 cells. CIT-induced DNA damage in HepG2 cells was evaluated by alkaline single-cell gel electrophoresis assay. To elucidate the genotoxicity mechanisms, the level of oxidative DNA damage was tested by immunoperoxidase staining for 8-hydroxydeoxyguanosine (8-OHdG); the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH) were examined; mitochondrial membrane potential and lysosomal membranes' permeability were detected; furthermore, protective effects of NAC on CIT-induced ROS formation and CIT-induced DNA damage were evaluated in HepG2 cells. A significant dose-dependent increment in DNA migration was observed at tested concentrations (2.50-10.00 µM) of CIT. The levels of ROS, 8-OHdG formation were increased by CIT, and significant depletion of GSH in HepG2 cells was induced by CIT. Destabilization of lysosome and mitochondria was also observed in cells treated with CIT. In addition, NAC significantly decreased CIT-induced ROS formation and CIT-induced DNA damage in HepG2 cells. The data indicate that CIT induces DNA damage in HepG2 cells, most likely through oxidative stress mechanisms; that NAC protects against DNA damage induced by CIT in HepG2 cells; and that depolarization of mitochondria and lysosomal protease leakage may play a role in CIT-induced DNA damage in HepG2 cells.

KEYWORDS:

8-OHdG; CIT; GSH; HepG2 cells; ROS; single-cell gel electrophoresis assay

PMID:
24318808
DOI:
10.1002/tox.21929
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center