Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Toxicol Chem. 2014 Mar;33(3):671-6. doi: 10.1002/etc.2489. Epub 2014 Jan 24.

Seed germination, root elongation, root-tip mitosis, and micronucleus induction of five crop plants exposed to chromium in fluvo-aquic soil.

Author information

1
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China.

Abstract

The present study aimed to determine the toxic effects of chromium (Cr) on cabbage (Brassica oleracea), cucumber (Cucumis sativus), lettuce (Lactuca sativa), wheat (Triticum aestivum), and corn (Zea mays), and identify the sensitive plant species and appropriate bioassays for potential use in phytotoxicity assessment of Cr in soil. Results showed that seed germination might not be a sensitive assay for assessing Cr toxicity because at most of the Cr levels there were no toxic effects. Root elongation was more sensitive to Cr than seed germination. The lowest concentration of adverse effect (LOAEC) of lettuce was 20 mg Cr/kg(-1) soil, and that of the other 4 species was 50 mg Cr/kg(-1) soil. The mitotic index fluctuated with increasing Cr concentration, thus it was insufficient to assess toxicity of Cr in soil. However, micronucleus assay showed that 5 mg Cr/kg(-1) soil caused a significant increase in micronucleus frequency in cabbage, cucumber, and lettuce. For wheat and corn, however, the LOAEC was 20 and 50 mg/Cr/kg(-1) soil, respectively. Furthermore, the analysis of Cr accumulation showed that lettuce significantly accumulated Cr for all the tested concentrations. However, corn and wheat significantly accumulated Cr only with the highest tested dose. This may explain the higher inhibitory effects of Cr on root growth. It can be concluded that root elongation and micronucleus assay are good indicators to assess the phytotoxicity of Cr in soil. Lettuce is the most sensitive species for indicating the toxicity of Cr in soil.

KEYWORDS:

Bioassays; Chromium; Genotoxicity; Indicator; Phytotoxicity

PMID:
24318542
DOI:
10.1002/etc.2489
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center