Send to

Choose Destination
PLoS One. 2013 Nov 29;8(11):e83395. doi: 10.1371/journal.pone.0083395. eCollection 2013.

The MEK-ERK pathway is necessary for serine phosphorylation of mitochondrial STAT3 and Ras-mediated transformation.

Author information

New York University Langone School of Medicine, New York, NY, United States of America.


Activating mutations in the RasGTPases are the most common oncogenic lesions in human cancer. Similarly, elevated STAT3 expression and/or phosphorylation are observed in the majority of human cancers. We recently found that activated Ras requires a mitochondrial rather than a nuclear activity of STAT3 to support cellular transformation. This mitochondrial activity of STAT3 was supported by phosphorylation on serine 727 (S727) in the carboxyl-terminus of STAT3. In this study we show that the H-Ras oncoprotein engages the MEK-ERK pathway to drive phosphorylation of STAT3 on S727, while phosphoinositide 3-kinase (PI3K) and mTOR activity were superfluous. Moreover, pharmacological inhibition of MEK reduced transformation by H-, K- or N-Ras. However, cells expressing a mitochondrially restricted STAT3 with a phospho-mimetic mutation at S727 were partially resistant to inhibition of the ERK pathway, exhibiting a partial rescue of anchorage-independent cell growth in the presence of MEK inhibitor. This study shows that the MEK-ERK pathway is required for activated Ras-induced phosphorylation of STAT3 on S727, that inhibition of STAT3 S727 phosphorylation contributes to the anti-oncogenic potential of MEK inhibitors, and that mitochondrial STAT3 is one of the critical substrates of the Ras-MEK-ERK- axis during cellular transformation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center