Format

Send to

Choose Destination
Clin Exp Ophthalmol. 2014 Aug;42(6):555-63. doi: 10.1111/ceo.12253. Epub 2013 Dec 4.

Biological effects of blocking blue and other visible light on the mouse retina.

Author information

1
Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.

Abstract

BACKGROUND:

To elucidate the biological effects of blocking fluorescent light on the retina using specific blocking materials.

METHODS:

Seven- to 8-week-old BALB/c mice were divided into three groups and placed in one of the three boxes: one blocked ultraviolet and violet wavelengths of light (violet blockade), one blocked ultraviolet, violet, blue and some other visible wavelengths (blue-plus blockade), and one allowed most visible light to pass through (control). They were then exposed to a white fluorescent lamp for 1 h at 5.65E-05 mW/cm(2) /s. After treatment, the electroretinogram, retinal outer nuclear layer thickness and retinal outer segment length were measured. In addition, retinal apoptotic cells were quantified by TdT-mediated dUTP nick-end labelling assay and c-Fos messenger RNA, and protein levels were measured by real-time reverse-transcription polymerase chain reaction and immunoblot analyses, respectively.

RESULTS:

The blue-plus blockade group retained a significantly better electroretinogram response following light exposure than the control or violet blockade groups. The blue-plus blockade group also exhibited greater outer nuclear layer thickness and greater outer-segment length, and fewer apoptotic cells after light exposure than the other groups. The c-Fos messenger RNA and protein levels were substantially reduced in the blue-plus blockade group and reduced to a lesser extent in the violet blockade group.

CONCLUSIONS:

The blockade of blue plus additional visible wavelengths of light was most effective in protecting the retina from light-induced damage. The blockade of violet light alone was also effective in reducing intracellular molecular responses, but these effects were not sufficient for attenuating retinal degeneration.

KEYWORDS:

apoptosis; c-Fos; light; photoreceptor; retina

Comment in

PMID:
24304494
DOI:
10.1111/ceo.12253
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center