Format

Send to

Choose Destination
See comment in PubMed Commons below
Sci Rep. 2013 Dec 2;3:3374. doi: 10.1038/srep03374.

Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO₃ thin films.

Author information

1
School of Physics & Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.

Abstract

The mutual controls of ferroelectricity and magnetism are stepping towards practical applications proposed for quite a few promising devices in which multiferroic thin films are involved. Although ferroelectricity stemming from specific spiral spin ordering has been reported in highly distorted bulk perovskite manganites, the existence of magnetically induced ferroelectricity in the corresponding thin films remains an unresolved issue, which unfortunately halts this step. In this work, we report magnetically induced electric polarization and its remarkable response to magnetic field (an enhancement of ~800% upon a field of 2 Tesla at 2 K) in DyMnO₃ thin films grown on Nb-SrTiO₃ substrates. Accompanying with the large polarization enhancement, the ferroelectric coercivity corresponding to the magnetic chirality switching field is significantly increased. A picture based on coupled multicomponent magnetic structures is proposed to understand these features. Moreover, different magnetic anisotropy related to strain-suppressed GdFeO₃-type distortion and Jahn-Teller effect is identified in the films.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center