Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2014 Jan;42(Database issue):D677-84. doi: 10.1093/nar/gkt1203. Epub 2013 Nov 26.

PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools.

Author information

1
Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA, Department of Genetics, Stanford University, Stanford, CA 94305, USA, Department of Biology, Texas A&M University, College Station, TX, 77843, USA, Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA and Deptartment of Preventive Medicine, University of Southern California, Los Angeles, CA 90089, USA.

Erratum in

  • Nucleic Acids Res. 2014 Oct 29;42(19):12330.

Abstract

PortEco (http://porteco.org) aims to collect, curate and provide data and analysis tools to support basic biological research in Escherichia coli (and eventually other bacterial systems). PortEco is implemented as a 'virtual' model organism database that provides a single unified interface to the user, while integrating information from a variety of sources. The main focus of PortEco is to enable broad use of the growing number of high-throughput experiments available for E. coli, and to leverage community annotation through the EcoliWiki and GONUTS systems. Currently, PortEco includes curated data from hundreds of genome-wide RNA expression studies, from high-throughput phenotyping of single-gene knockouts under hundreds of annotated conditions, from chromatin immunoprecipitation experiments for tens of different DNA-binding factors and from ribosome profiling experiments that yield insights into protein expression. Conditions have been annotated with a consistent vocabulary, and data have been consistently normalized to enable users to find, compare and interpret relevant experiments. PortEco includes tools for data analysis, including clustering, enrichment analysis and exploration via genome browsers. PortEco search and data analysis tools are extensively linked to the curated gene, metabolic pathway and regulation content at its sister site, EcoCyc.

PMID:
24285306
PMCID:
PMC3965092
DOI:
10.1093/nar/gkt1203
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center