Send to

Choose Destination
Neuroreport. 2014 Apr 16;25(6):367-72. doi: 10.1097/WNR.0000000000000092.

Glial cell line-derived neurotrophic factor-secreting human neural progenitors show long-term survival, maturation into astrocytes, and no tumor formation following transplantation into the spinal cord of immunocompromised rats.

Author information

Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, California, USA.


Human neural progenitor cells (hNPCs) derived from the fetal cortex can be expanded in vitro and genetically modified through lentiviral transduction to secrete growth factors shown to have a neurotrophic effect in animal models of neurological disease. hNPCs survive and mature following transplantation into the central nervous system of large and small animals including the rat model of amyotrophic lateral sclerosis. Here we report that hNPCs engineered to express glial cell line-derived neurotrophic factor (GDNF) survive long-term (7.5 months) following transplantation into the spinal cord of athymic nude rats and continue to secrete GDNF. Cell proliferation declined while the number of astrocytes increased, suggesting final maturation of the cells over time in vivo. Together these data show that GDNF-producing hNPCs may be useful as a source of cells for long-term delivery of both astrocytes and GDNF to the damaged central nervous system.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wolters Kluwer Icon for PubMed Central
Loading ...
Support Center