Send to

Choose Destination
J Chem Ecol. 1988 Oct;14(10):1965-75. doi: 10.1007/BF01013489.

Plant-insect coevolution and inhibition of acetylcholinesterase.

Author information

Department of Zoology, University College Dublin, Belfield, Dublin 4, Ireland.


The theory of plant-insect coevolution provides for diffuse coevolution and the expectation that plants evolve broad-spectrum chemical defenses with which some insects coevolve by detoxifying and using the compounds as host-location cues. Specific biochemical modes of action have been assigned to relatively few such defense chemicals and one major class, the terpenoids, is investigated here. Six terpenoids inhibited the enzyme acetylcholinesterase (derived from electric eel) and elicited the appropriate in vivo effects of insect paralysis and mortality. The diterpene gossypol was a reversible uncompetitive inhibitor. Five monoterpenes, representing a range of functional groups, were reversible competitive inhibitors apparently occupying at least the hydrophobic site of the enzyme's active center. Such data suggest the involvement of acetylcholinesterase in the coevolved insect response to terpenoids.


Supplemental Content

Loading ...
Support Center