Send to

Choose Destination
Planta. 1982 Jun;154(6):501-15. doi: 10.1007/BF00402994.

The control of cellulose microfibril deposition in the cell wall of higher plants : II. Freeze-fracture microfibril patterns in maize seedling tissues following experimental alteration with colchicine and ethylene.

Author information

Department of Botany, University of North Carolina, 27514, Chapel Hill, NC, USA.


Cells of maize (Zea mays L.) seedling that are not fixed or cryoprotected contain the impressions of cellulose microfibrils on freeze-fractured plasma membranes. Impressions of the most recently deposited microfibrils have terminal complexes associated with them (see preceding paper). The orientations of microtubules in cytoplasmic fractures are parallel to the newest microfibrils observed on adjacent plasma membrane fractures. Small groups of microfibrils, distinguished from the next older layer by their new orientation, are sometimes observed directly adjacent and parallel to individual microtubules. Whereas microtubules are parallel to microfibril orientations which vary from transverse to occasionally longitudinal, microfilaments are parallel to the longitudinal cell axis. After colchicine treatment, cytoplasmic microtubules are absent, as are the bands of microfibrils that are observed on the membrane of control cells. Parallel orientations of microfibrils and normal pitfield outlines are often still observed after colchicine treatment. However, on some membranes, multidirectionally-oriented microfibril tips occur, associated with perturbations of microfibril orientation and rounded pit-field outlines. In ethylene-treated cells, some membranes have microfibril tips oriented in only one direction in new layers of longitudinal microfibrils. On other membranes, longitudinal bands of microfibril tips are oriented in opposing directions. We propose that after colchicine treatment, the patterns of microfibrils reflect an orientation mechanism which has been uncoupled from the influence of microtubules but which is still under some other form of cellular control. We propose that membrane flow could orient the lateral movement of synthesizing complexes in the membrane and that microtubules modulate this movement, apparently organizing the microfibrils into parallel bands in newly-forming wall layers.


Supplemental Content

Loading ...
Support Center