Format

Send to

Choose Destination
Evolution. 2014 Apr;68(4):1188-96. doi: 10.1111/evo.12321. Epub 2013 Dec 19.

Estimating uncertainty in multivariate responses to selection.

Author information

1
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S3B2, Canada; Centre for Genome Evolution and Function, University of Toronto, Toronto, Ontario, M5S3B2, Canada. john.stinchcombe@utoronto.ca.

Abstract

Predicting the responses to natural selection is one of the key goals of evolutionary biology. Two of the challenges in fulfilling this goal have been the realization that many estimates of natural selection might be highly biased by environmentally induced covariances between traits and fitness, and that many estimated responses to selection do not incorporate or report uncertainty in the estimates. Here we describe the application of a framework that blends the merits of the Robertson-Price Identity approach and the multivariate breeder's equation to address these challenges. The approach allows genetic covariance matrices, selection differentials, selection gradients, and responses to selection to be estimated without environmentally induced bias, direct and indirect selection and responses to selection to be distinguished, and if implemented in a Bayesian-MCMC framework, statistically robust estimates of uncertainty on all of these parameters to be made. We illustrate our approach with a worked example of previously published data. More generally, we suggest that applying both the Robertson-Price Identity and the multivariate breeder's equation will facilitate hypothesis testing about natural selection, genetic constraints, and evolutionary responses.

KEYWORDS:

Bayesian; MCMC; Robertson-Price Identity; multivariate breeder's equation; response to selection; secondary theorem of selection; selection differential; selection gradient

PMID:
24274331
DOI:
10.1111/evo.12321
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center