Send to

Choose Destination
Dev Dyn. 2014 Mar;243(3):368-80. doi: 10.1002/dvdy.24072. Epub 2013 Nov 23.

Neural crest-derived cells sustain their multipotency even after entry into their target tissues.

Author information

Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST).



Neural crest cells (NC cells) are highly migratory multipotent cells. Their multipotency is transient at the early stage of their generation; soon after emerging from the neural tube, these cells turn into lineage-restricted precursors. However, recent studies have disputed this conventionally believed paradigm. In this study, we analyzed the differentiation potency of NC-derived cells after their arrival at target tissues.


Using Sox10-IRES-Venus mice, we found that the NC-derived cells in the skin, DRG, and inner ear could be divided into two populations: Sox10-positive/Kit-negative cells (Sox10+/Kit- cells) and Sox10- and Kit-positive cells (Sox10+/Kit+ cells). Only the Sox10+/Kit- cells were detected in the intestines. Unexpectedly, the Sox10+/Kit+ cells differentiated into neurons, glial cells, and melanocytes, showing that they had maintained their multipotency even after having entered the target tissues. The Sox10+/Kit+ cells in the DRG maintained their multipotency for a restricted period during the earlier embryonic stages, whereas those in the skin and inner ear were multipotent yet even in later embryonic stages.


We showed that NC-derived Sox10+/Kit+ cells maintained their multipotency even after entry into the target tissues. This unexpected differentiation potency of these cells in tissues seems to have been strictly restricted by the tissue microenvironment.


Sox10; kit; mouse; neural crest

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center