Format

Send to

Choose Destination
Nat Chem. 2013 Dec;5(12):1000-5. doi: 10.1038/nchem.1764. Epub 2013 Sep 29.

Pattern transformation with DNA circuits.

Author information

1
Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.

Abstract

Readily programmable chemical networks are important tools as the scope of chemistry expands from individual molecules to larger molecular systems. Although many complex systems are constructed using conventional organic and inorganic chemistry, the programmability of biological molecules such as nucleic acids allows for precise, high-throughput and automated design, as well as simple, rapid and robust implementation. Here we show that systematic and quantitative control over the diffusivity and reactivity of DNA molecules yields highly programmable chemical reaction networks (CRNs) that execute at the macroscale. In particular, we designed and implemented non-enzymatic DNA circuits capable of performing pattern-transformation algorithms such as edge detection. We also showed that it is possible to fine-tune and multiplex such circuits. We believe these strategies will provide programmable platforms on which to prototype CRNs, discover bottom-up construction principles and generate patterns in materials.

PMID:
24256862
PMCID:
PMC3970425
DOI:
10.1038/nchem.1764
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center