Format

Send to

Choose Destination
Theor Appl Genet. 1984 Dec;69(2):153-65. doi: 10.1007/BF00272889.

Allozyme variation and evolutionary relationships of grain amaranths (Amaranthus spp.).

Author information

1
Department of Agronomy and Range Science, University of California, 96616, Davis, CA, USA.

Abstract

Allozyme studies in amaranth provided useful assays of genetic variation in order to verify the patterns inferred from morphological traits, for elucidating the genetic structure of landraces, and for the studies of evolutionary relationships among wild, weedy and crop species. Thirty-four populations of cultivated New World amaranths were surveyed along with 21 weedy New World populations for allozyme variation at nine electrophoretic enzyme loci. Eleven populations of cultivated amaranths from the Indian State of Uttar Pradesh and six from Nepal were also surveyed for a comparison. In the New World populations, heterozygosity was low, and different populations ranged from 0 to 44% polymorphic loci. Adjacent populations were often fixed for different alleles or had very different allele frequencies at certain loci, with no apparent geographical patterns. Diversity index H' was partitioned into the intra- and interpopulation as well as the interspecific components of variability. The crop versus weed genetic distances were the largest, whereas the intra- and interpopulation components of H' were about equal. Genetic structure of all three species of the New World amaranths together can be described as a collection of distinct populations, each more or less a heterogeneous collection of highly homozygous individuals. The North Indian populations showed relatively less allozyme variability with the most common alleles same as those of Mexican landraces. Alleles at several loci proved to be diagnostic of the crop and weed groups, and of the three individual crop species. Genetic distances based on pooled gene frequencies showed the three crop species to be generally more closely related inter se than they were to their putative weedy progenitor species, respectively (with the exception of the weed-crop pair A. quitensis and A. caudatus). This implies a single domestication event involving A. hybridus as the common ancestor rather than three separate domestication events. Close similarity between A. caudatus and A. quitensis might have resulted from transdomestication based on a weedy or semi-domesticated species having migrated from Meso-America to South America. This preliminary report must now be expanded by further ecogeographical, cytogenetic and population studies on new extensive collections from the areas of early domestication. Some evidence of recent introgression and/or segregation of crop-weed hybrids between A. caudatus and A. retroflexus is available in the form of rare individuals in crop populations with crop allozyme genotypes except for a single homozygous weedy allele.

PMID:
24253706
DOI:
10.1007/BF00272889

Supplemental Content

Loading ...
Support Center