Format

Send to

Choose Destination
See comment in PubMed Commons below
Sensors (Basel). 2013 Nov 18;13(11):15726-46. doi: 10.3390/s131115726.

A Doppler transient model based on the laplace wavelet and spectrum correlation assessment for locomotive bearing fault diagnosis.

Author information

1
Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China. kongfr@ustc.edu.cn.

Abstract

The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
    Loading ...
    Support Center